
TRIAL BY FIRE
REAL WORLD PERFORMANCE

OPTIMIZATION

Tuesday, September 3, 13

Who are we?
Some dudes from Imaginary Landscape.

Dan Johnson

Joe Jasinski

Tuesday, September 3, 13

What this talk is...
● High level performance overview

● Quickly address major areas of concern

● A talk for those looking for improving performance but
have no idea where to start

Tuesday, September 3, 13

What this talk isn’t...
● A debate on which wsgi http server to use

● A “this is the way and the only way” talk

● An in-depth guide to configuration settings

● The only performance resource you’ll ever need

Tuesday, September 3, 13

Why Improve Performance?

Source: Building Faster Websites, Ilya Grigorik - bit.ly/12GFKDE

Tuesday, September 3, 13

Overall Goals

● Improve user experience via:
○ Quickly displaying response to user
○ Reducing the number of requests
○ Reducing the duration of requests
○ Reducing size of responses

● Improve performance of server by:
○ Offloading assets to 3rd party
○ Deferring non-essential tasks
○ Reducing time in request/response cycle

Tuesday, September 3, 13

My site is slow… Where do I start?

● This is always the hardest part.

● What is slow?

● Be patient

● Be suspicious

● Go see what is happening
Tuesday, September 3, 13

Finding Problems
on the Frontend

Tuesday, September 3, 13

Common Problem Areas

● Large and Unoptimized payloads

● Large quantity of blocking requests

● Slow responses from 3rd party
resources

Tuesday, September 3, 13

Chrome Developer Tools (waterfall)

Tuesday, September 3, 13

Events Timeline

Tuesday, September 3, 13

External
Analyzers

Tuesday, September 3, 13

Google PageSpeed Insights

Tuesday, September 3, 13

Pingdom’s Speed Tools

Tuesday, September 3, 13

Yslow Browser Plugin

Tuesday, September 3, 13

Finding problems
on the Backend

Tuesday, September 3, 13

Typical Problem Areas

● Large quantity of SQL queries

● Overly complex SQL queries

● Performing unnecessary actions in
the request/response cycle

● Complex template actions

Tuesday, September 3, 13

Debug Toolbar

Tuesday, September 3, 13

Cache Panel & Template Timings

Tuesday, September 3, 13

Profiling Middleware

Get contextual information on all calls.

If something looks strange, its probably worth
investigating.

Tuesday, September 3, 13

Improving Front
End Performance

Tuesday, September 3, 13

HTML Minification
● Remove non-essential whitespace in html
○ Results in fewer bytes going over the wire

● Django module: django-htmlmin

Tuesday, September 3, 13

JS and CSS Compression
● Combine all JS and all CSS for fewer

requests

● Compress combined files

● Create unique urls for compressed objects
○ i.e. /static/CACHE/css/2e8410b45f53.css

Tuesday, September 3, 13

Django Compressor

Before Compression
{% load compress %}

{% compress css %}<link rel="stylesheet" href="/static/css/one.css"

type="text/css" charset="utf-8"><style type="text/css">p { border:5px solid

green;}</style><link rel="stylesheet" href="/static/css/two.css" type="text/

css" charset="utf-8">

{% endcompress %}

After Compression
<link rel="stylesheet" href="/static/CACHE/css/f7c661b7a124.css" type="text/

css" charset="utf-8">

Tuesday, September 3, 13

Django Compressor
Supported Engines

Tuesday, September 3, 13

Image Optimizations

● Remove unneeded image meta-data
● Compress Images when you can
○ Suggestion: size <= 70 kb
○ Offer WebP to supported browsers
○ JPEG? PNG?

Django tools for auto-thumbnailing:
● sorl-thumbnails
● easy-thumbnails

Tuesday, September 3, 13

Image Sprites to Reduce # Requests
<style>

div { float: left; border: solid black 1px;} #add, #edit, #remove, #join

{ width:20px; height:20px; }#remove { background:url("remove.png") } #add

{ background:url("add.png") }#edit { background:url("edit.png") } #join { background:url("join.png") }

</style><div id="remove"></div><div id="add"></div><div id="edit"></div><div id="join"></div>

Without Sprites

Tuesday, September 3, 13

Image Sprites to Reduce # Requests
<style>

div { float: left; border: solid black 1px;} #add, #edit, #remove, #join, #leave

{ width:20px; height:20px; }#remove { background:url("sprites.png") 0 0; }#add

{ background:url("sprites.png") 20 0; }#edit { background:url("sprites.png") 36 0; width:18px; }#join

{ background:url("sprites.png") 56 0; }

</style><div id="remove"></div><div id="add"></div><div id="edit"></div><div id="join"></div>

With Sprites

Tuesday, September 3, 13

Resource Order

● Load first styles in the critical path
○ Consider inlining a few critical styles

● Place javascript after other resources
○ ideally at end of the html document

● Markup after script tags is not processed until
after the script has been downloaded and
executed

Tuesday, September 3, 13

Lazy Loading
● Don’t bother loading images far down on a page until a

user gets there.
○ If they never scroll down that far, why bother right?

● Can be via done via JS or Nginx module

● Particularly useful for pages with long lists of images

● Reduce traffic to server/CDN

Tuesday, September 3, 13

Asset CDNS

Host assets on a content delivery network.
● Worldwide edge nodes
● Serve assets from closest server
● Have high availability of up time
● Reduce load from server
● Improve site load time

Each alternate domain used requires a DNS
lookup and a round-trip.

Tuesday, September 3, 13

Improving Back
End Performance

Tuesday, September 3, 13

SQL Queries
● Use “values_list”

● Don’t be afraid to use “raw”
○ But be skeptical if you really need to

● Verify you are not repeating the same query multiple
times.

● Use select_related and prefetch_related

Tuesday, September 3, 13

Select Related
users = User.objects.all()[:10]
for user in users: print user.userprofile.slug

11 SQL queries!

users = User.objects.select_related(
 'userprofile')[:10]

1 SQL query!

Tuesday, September 3, 13

Prefetch Related
content = Content.objects.all()[:10]
for c in content: print c.want_it_users.all()

11 SQL queries!

c = Content.objects.all().prefetch_related(
 'want_it_users')[:10]

2 SQL queries!

Tuesday, September 3, 13

Cache?
● “Just cache it.”

● Which cache should I use?
○ Redis?
○ Memcached?
○ Local Mem?
○ Database?

● How should I cache it?

Tuesday, September 3, 13

Django Low Level Caching

1. Low level cache API
a. django.core.cache

2. Reduce expensive lookups

3. Utilize get(), set(), and delete() methods directly modify
individual cache keys

4. Cache invalidation can be a challenge
5. Consider priming the cache

Tuesday, September 3, 13

Django Low Level Caching (cont)

class MyModelManager(models.Manager):

 def lookup_variable(self, string):

 return_value = cache.get(string, [])

 if not return_value:

 logger.debug("Miss: not in Cache: %s" % (string))

 return_value = u"%s" % self.get_query_set().get(slug=string).value

 cache.set(string, return_value)

 else:

 logger.debug("Hit: Value Fetched from Cache: %s" % (string))

 return return_value

Example: lookup a potentially cached object within a
manager

Tuesday, September 3, 13

Template Fragment Caching

● Renders pieces of template content and
caches the HTML

{% with role=mymodel|role:request.user %}

 {% cache 3000 cache_key_name role %}

 {% include "mymodule/includes/my_cached_include.html" %}

 {% endcache %}

{% endwith %}

Tuesday, September 3, 13

The Per-Site Cache

● Cache the your entire site through
middleware

● Configurable to only cache anonymous visits

● Built In and Easily Configurable

● Has some problems with Google Analytics
○ Easily fixed!

Tuesday, September 3, 13

Cache Frameworks

There are a variety of cache frameworks:
● Johnny Cache
● Cache Machine

Both provide ORM model caching and
automatic invalidation on updates.

Easily drop them into your application with
minimal effort.

Tuesday, September 3, 13

More on CDNs...

Browsers:
● ~6 connections per hostname
● more maximum connections

This means there are still ways we can fully take
advantage of what the browser can do.

We should serve our assets from several CDN
subdomains so that we use as many of the
available connections as possible.

Tuesday, September 3, 13

Hash Ring with CDN Domains
● Consistent hashing

MEDIA_CDN_DOMAINS = ['1.foo.net', '2.foo.net',]
HASH_RING = hash_ring.HashRing(cdn_domains)
Overriding url method in my storage backend
def url(self, name):
 return "//%s/%s" % (HASH_RING.get_node(name), name)

The url returned is the same each time, unless I change the
number of cdn domains.

Tuesday, September 3, 13

Limit what you do inside a request

Always ask yourself “Does this have to happen
right now?”
If the answer is “no” or “maybe”, defer it.

Your goal should be to do the bare minimum
inside of a request/response cycle to
accomplish the job.

Every Django process is valuable.

Tuesday, September 3, 13

Job Queues

Use job queues systems like Celery or RQ
(Redis Queue) to run jobs out of band.

Celery is the “go-to” solution and offers some
additional features over redis-queue. Typically
requires more configuration.

RQ is simple to configure and run “out of the
box”, but less featureful.

Tuesday, September 3, 13

Sample Job Queue (using RQ)
jobs.py

def make_a_call(x):

 # Do a time consuming task

 api_result = api.send(x)

 result = models.Result()

 result.result = api_result

 result.save()

the shell

from django_rq import *

queue = get_queue('default')

import jobs

j = queue.enqueue(

 jobs.make_a_call, 1)

Tuesday, September 3, 13

Server Level Optimizations

Tuesday, September 3, 13

Set Expires and Cache Control

location /static {

 root /www/site/htdocs;

 access_log off;

 add_header Pragma public;

 add_header Cache-Control "public";

 location ~* \.(css|js)$ {

 expires 60d;

 }

}

● Expires: helps browsers to cache content
○ Download once per cache-period

● Cache-Control: external caches may cache

Tuesday, September 3, 13

Use Gzip Responses

● Most browsers support gzip content encoding
○ Reduces page download size

● Configured at the Application or Server level
○ Django GzipMiddleware
○ Nginx/Apache configuration

● Lowers network delay in exchange for a bit of
CPU work

● Do NOT use for HTTPS content
○ Due to recent BREACH attack

Tuesday, September 3, 13

Google ModPageSpeed

● Automates a lot of the aforementioned
○ Combine/Compresses css/js automatically
○ Optimizes images; removes metadata
○ Fingerprints assets
○ Adds expires header
○ Serves webp as needed

● Asynchronously optimizes/caches content on
first load

● Nginx/Apache Module
Tuesday, September 3, 13

Database Connection Poolers

● Sits between the application and the database

● Reuses database connections
○ prevents connection overhead

● Relatively easy to configure for a quick
performance boost

● Use IPs for database connections

Tuesday, September 3, 13

Use Cached Django Sessions

Don’t use database for session storage

Why?
● Page request = Database read
● Session create/modify = Database write

Cached session reduce database load and have a
higher performance throughput.

Tuesday, September 3, 13

Would you like to know more?
• Django Debug Toolbar:

o Debug toolbar: https://github.com/django-debug-toolbar/django-debug-toolbar
o Cache Panel: https://github.com/lincolnloop/django-cache-panel
o Template Timings: https://github.com/orf/django-debug-toolbar-template-timings

• Hash Ring: http://amix.dk/blog/viewEntry/19367
• Browser Concurrent Connections: http://www.browserscope.org/results?o=xhr&v=top&category=network
• Lazy Image Loading:

o PageSpeed Module (Nginx/Apache): https://developers.google.com/speed/pagespeed/module/filter-lazyload-images
o Unveil.js: http://luis-almeida.github.io/unveil/
o lazyload.js: http://www.appelsiini.net/projects/lazyload

• Task Queues:
o Celery: http://celeryproject.org/

 django-celery: http://docs.celeryproject.org/en/latest/django/index.html
o RQ: http://python-rq.org/

 django-rq: https://github.com/ui/django-rq
• Caching:

o Johnny Cache: http://pythonhosted.org/johnny-cache/
o Cache Machine: https://cache-machine.readthedocs.org/en/latest/
o The Per-Site Cache: https://docs.djangoproject.com/en/dev/topics/cache/#the-per-site-cache

 Fixing Site-Wide Caching: https://www.silviogutierrez.com/blog/fixing-site-wide-caching-django/
o Where Django Caching Busts at the Seams: http://www.slideshare.net/csky/where-django-caching-bust-at-the-seams

• Minification
o HTML minification with django-htmlmin https://github.com/cobrateam/django-htmlmin
o Image Thumbnail

 sorl-thumbnail http://sorl-thumbnail.readthedocs.org/en/latest/
 easy-thumbnail https://github.com/SmileyChris/easy-thumbnails

Tuesday, September 3, 13

https://github.com/django-debug-toolbar/django-debug-toolbar
https://github.com/django-debug-toolbar/django-debug-toolbar
https://github.com/django-debug-toolbar/django-debug-toolbar
https://github.com/django-debug-toolbar/django-debug-toolbar
https://github.com/lincolnloop/django-cache-panel
https://github.com/lincolnloop/django-cache-panel
https://github.com/lincolnloop/django-cache-panel
https://github.com/lincolnloop/django-cache-panel
https://github.com/orf/django-debug-toolbar-template-timings
https://github.com/orf/django-debug-toolbar-template-timings
https://github.com/orf/django-debug-toolbar-template-timings
https://github.com/orf/django-debug-toolbar-template-timings
http://amix.dk/blog/viewEntry/19367
http://amix.dk/blog/viewEntry/19367
http://www.browserscope.org/results?o=xhr&v=top&category=network
http://www.browserscope.org/results?o=xhr&v=top&category=network
https://developers.google.com/speed/pagespeed/module/filter-lazyload-images
https://developers.google.com/speed/pagespeed/module/filter-lazyload-images
http://luis-almeida.github.io/unveil/
http://luis-almeida.github.io/unveil/
http://www.appelsiini.net/projects/lazyload
http://www.appelsiini.net/projects/lazyload
http://celeryproject.org/
http://celeryproject.org/
http://docs.celeryproject.org/en/latest/django/index.html
http://docs.celeryproject.org/en/latest/django/index.html
http://python-rq.org/
http://python-rq.org/
https://github.com/ui/django-rq
https://github.com/ui/django-rq
http://pythonhosted.org/johnny-cache/
http://pythonhosted.org/johnny-cache/
https://cache-machine.readthedocs.org/en/latest/
https://cache-machine.readthedocs.org/en/latest/
https://docs.djangoproject.com/en/dev/topics/cache/%23the-per-site-cache
https://docs.djangoproject.com/en/dev/topics/cache/%23the-per-site-cache
https://www.silviogutierrez.com/blog/fixing-site-wide-caching-django/
https://www.silviogutierrez.com/blog/fixing-site-wide-caching-django/
http://www.slideshare.net/csky/where-django-caching-bust-at-the-seams
http://www.slideshare.net/csky/where-django-caching-bust-at-the-seams
https://github.com/cobrateam/django-htmlmin
https://github.com/cobrateam/django-htmlmin
http://sorl-thumbnail.readthedocs.org/en/latest/
http://sorl-thumbnail.readthedocs.org/en/latest/
https://github.com/SmileyChris/easy-thumbnails
https://github.com/SmileyChris/easy-thumbnails

Would you like to know more? (cont)
● Minification (continued)

○ CSS minifiers comparrision: http://www.phpied.com/css-minifiers-comparison/
○ Slimit Vs YUI: http://ruslanspivak.com/2012/01/15/slimit-vs-yui-compressor/

● Profiling Middleware: http://djangosnippets.org/snippets/1579/
● Cache Controls & Headers:

○ Google Resource: https://developers.google.com/speed/docs/best-practices/caching
○ Cache Control Directives Demystified: http://palpapers.plynt.com/issues/2008Jul/cache-control-attributes/

● Minimize round-trip time: https://developers.google.com/speed/docs/best-practices/rtt
● Developer Tools:

○ Chrome Network Tab: https://developers.google.com/chrome-developer-tools/docs/network
○ Chrome Events Tab: https://developers.google.com/chrome-developer-tools/docs/timeline

● Third Parties Speed Analyzers:
○ Google Pagespeed: https://developers.google.com/speed/pagespeed/insights/
○ Yahoo!’s Yslow: http://developer.yahoo.com/yslow/
○ Pingdom’s Speed Tools: http://tools.pingdom.com/fpt/

● Cached Session Backends:
○ Redis: https://pypi.python.org/pypi/django-redis-sessions
○ Memcached: https://docs.djangoproject.com/en/dev/topics/http/sessions/?from=olddocs#using-cached-sessions

● General Information:
○ 1000ms to Glass: http://alistapart.com/blog/post/breaking-the-1000ms-time-to-glass-mobile-barrier

Joe JasinskiDan Johnson

Imaginary Landscape
www.imagescape.com

Tuesday, September 3, 13

http://www.phpied.com/css-minifiers-comparison/
http://www.phpied.com/css-minifiers-comparison/
http://ruslanspivak.com/2012/01/15/slimit-vs-yui-compressor/
http://ruslanspivak.com/2012/01/15/slimit-vs-yui-compressor/
http://djangosnippets.org/snippets/1579/
http://djangosnippets.org/snippets/1579/
https://developers.google.com/speed/docs/best-practices/caching
https://developers.google.com/speed/docs/best-practices/caching
http://palpapers.plynt.com/issues/2008Jul/cache-control-attributes/
http://palpapers.plynt.com/issues/2008Jul/cache-control-attributes/
https://developers.google.com/speed/docs/best-practices/rtt
https://developers.google.com/speed/docs/best-practices/rtt
https://developers.google.com/chrome-developer-tools/docs/network
https://developers.google.com/chrome-developer-tools/docs/network
https://developers.google.com/chrome-developer-tools/docs/timeline
https://developers.google.com/chrome-developer-tools/docs/timeline
https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/
http://developer.yahoo.com/yslow/
http://developer.yahoo.com/yslow/
http://tools.pingdom.com/fpt/
http://tools.pingdom.com/fpt/
https://pypi.python.org/pypi/django-redis-sessions
https://pypi.python.org/pypi/django-redis-sessions
https://docs.djangoproject.com/en/dev/topics/http/sessions/?from=olddocs%23using-cached-sessions
https://docs.djangoproject.com/en/dev/topics/http/sessions/?from=olddocs%23using-cached-sessions
http://alistapart.com/blog/post/breaking-the-1000ms-time-to-glass-mobile-barrier
http://alistapart.com/blog/post/breaking-the-1000ms-time-to-glass-mobile-barrier
http://www.imagescape.com
http://www.imagescape.com

